MouseAir
A Control Panel for Cat Entertainment

Reprinted from the
MagPi Issue 25,
July 2014.
www.themagpi.com

SKILL LEVEL : INTERMEDIATE

Introduction

| have always enjoyed building control panels for
my projects. | used to laboriously build physical
control panels with switches, meters and lights.
Lots of lights. MouseAir is a complex project. 4
Servo Motors, 3 Sensors, 4 relays, 2 DC motors,
one mother-of-all solenoids, one camera and one
obnoxious cat, all working in sequence. All this to
launch toy mice across the room.

| like to be able to change parameters, change
modes and cause actions (such as entertaining a
cat), whether sitting near the MouseAir launcher or
across the world.

MouseAir System Diagram

n T -
“ @\0

,et‘
|
s@/

((t"))$

Uss P>

o
o
ae

oy
«
.
Controller \
Pan/Tilt Servos Mouse Loading —~
Servos S -

RasPiConnect App

Building a Control Panel

John Shovic

Guest Writer

In this project at SwitchDoc Labs, | am using
RasPiConnect (www.milocreek.com) to control
MouseAir. RasPiConnect allows me to build
multiple pages of controls, with graphs, webpages,
pictures, streaming video (with a little more work!)
and lots of lights and buttons on an iPad or iPhone
without having to build and submit an app to the
App Store. You build the controls on the phone or
tablet and then modify a server on the Raspberry Pi
to talk to the control panel. This is the second
project for which | am using RasPiConnect. The
first is Project Curacao, descripted in early issues
of The MagPi.

Description of Mouse Air

The MouseAir system is built around a Raspberry
Pi controlling all the devices necessary to launch
the toys, connected to the iPad via a WiFi
connection. We are using a Pi Camera on a pan /
tilt structure to capture the cat events, examine the
launching mechanism for jams, motion detection
and even streaming video. It uses a solenoid to
push a mouse between two rapidly spinning DC
motors. Note the hand built 125KHz RFID antenna
on the right side in the picture overleaf. See an
early mouse launch at:
http://www.switchdoc.com/2014/04/mouseair-
prototype-video

The motors are a bit of an overkill. A properly
loaded mouse can be shot 10 meters!

v

John C Shovic
Reprinted from the MagPi Issue 25, July 2014. www.themagpi.com

What Controls to Use

In designing a control panel using RasPiConnect,
the first thing you have to do is choose which
controls to use and where to place them on the
iPad Screen. This is all done within the app on the
iPad or iPhone. RasPiConnect has a collection of
about 20 controls to choose from, all with special
options and behaviours from meters to buttons to
LEDs to constantly updated live graphs.

The first thing | did was decide what | wanted to
control: which sensors are used for triggering,
controlling and viewing the Pi Camera, be able to
manually launch mice and manually control any
part of the six step procedure to launch the mouse.

Every control in RasPiConnect has an input and
response. The app sends an input to your
Raspberry Pi (or Arduino, or both!) and the
Raspberry Pi sends back a response.

Pi Camera display

For the camera display, | have chosen a Remote
Picture Webview control. This control has a title
and the response from the Raspberry Pi is in the
form of an HTML page. It is very flexible and you
can configure it for pictures or for streaming video
with a little effort. Note the mouse peeking out.

Buttons for action
In RasPiConnect, there are two types of buttons:
Action and Feedback Action. You use Action
Buttons to do an action that does not require
feedback (however, there are ways to provide
feedback by refreshing other controls based on
an Action Button tap). For example, "Take
Picture".

Take Picture

Feedback Buttons for Selections
Feedback Buttons are used for cycling through a
set of options (such as "Off" and "On"). Tapping
a Feedback Button sends an input to the
Raspberry Pi (the current text in the button) and
the response text from the Raspberry Pi replaces
the button text. For example, tapping the
"Ultrasonic Off" button will send "Ultrasonic Off"
to the Raspberry Pi, turn the Ultrasonic sensor
off and return the text "Ultrasonic On" to set up
the button for the next tap. In Project Curacao,
some buttons had 8 different states!

Ultrasonic Off

Live graphs for real time reports

The live controls are a new feature in the lastest
version of RasPiConnect. They are a collection of
controls that will periodically (interval set by the
user) ask the Raspberry Pi for any new information
and update the iPad screen. | decided to use a
Complex Line Graph Live control to give a
continuous display of what distance the ultrasonic
sensor is reading (is the cat walking by?)

- ¥

Each time the iPad app asks for an update of the
graph, the Raspberry Pi returns a response of the
list of data points to be graphed and what text to
use for the x axis labels, | usually set this display
to update every second. Note that RasPiConnect
will only allow you to use this feature if you are
connected to WiFi on the iPad. We don't want to
run up the mobile data bill!

r ™

25.0
222
19.4
16.7
13.9
11.1
8.3
5.6
2.8
0

by S

Live Ultrasonic Range

Configuring RasPiConnect on the
iPad

Each of the desired controls is placed on the iPad
in the Panel Setup tab within RasPiConnect.

Carrier T 12:21 PM
Edit Page Edit Selection Save Load
twoapps.xml

Panel Setup

The design screen in RaspiConnect

Backgrounds

To finish off the control panel we add the MouseAir
logo and accent text boxes onto the screen. To do
this we build a custom background in the page (we
used Grafio on an iPad to generate a JPG or PNG
file) and then select this background graphic for the

page.

i~

MouseAir

Triggers

Video Controls

Camera Pan/Tilt
Manual Controls

Live Ultrasonic Range

L
The background image loaded into the app

Configuring RasPiConnectServer
Software on the Raspberry Pi

The MouseCommand.txt file is first written by the
RasPiConnectServer program and then read by
MouseAir. When the command is complete,
MouseAir writes "DONE" into the command file,
telling RasPiConnectServer that it is finished and
ready for the next command. Note that the

RasPiConnect app keeps all commands in
wse @ queue and will not send another
command until either a timeout occurs
(programmable) or it gets a response from
the Raspberry Pi.

The MouseAir Control Software

The MouseAir software operates in a loop,
periodically checking for a new command
from RasPiConnect, checking for triggers
from RFID, Pi Camera motion and
checking for an Ultrasonic trigger. The
MouseAir software is available on
http://github.com/switchdoclabs.

On the MouseAir side, the software for
receiving commands from RasPiConnect
is contained in processcommand().

def processCommand():

-F =
open("/home/pi/MouseAir/state/MouseComman
d‘txtll’ "r'")

command = f.read() f.close()

if (command == "") or (command ==

"DONE"):

w

Nothing to do
return False

Check for our commands
pclogging.log(pclogging.INFO, __name__,
"Command %s Received" % command)

n

rint "Processing Command: command
b

if (command == "FIREMOUSE"):
fireMouse() completeCommand()
return True

if (command == "TAKEPICTURE"):
utils.threadTakePicture("Picture

Taken -RasPiConnect Command")

completeCommand()
return True

def completeCommand():

-F=
open("/home/pi/MouseAir/state/MouseComman
d.txt", "w") f.write("DONE™)

f.close()

The RasPiConnectServer Software

RasPiConnectServer is a Python program
provided for connection from a Raspberry Pi to
the RasPiConnect app. Change the file Local.py
(in addition config.py) to connect to the MouseAir
software. MiloCreek provides full documentation
for Local.py and the rest of the server at
www.milocreek.com under the documentation
link. Each button is pretty simple to do.

There are some other setup items such as
setting URLs for your Raspberry Pi that are fully
explained in the manual.

All of the software that you need to write is
placed in Local.py. There is an example Local.py
file provided in the server download. To illustrate
how to write the interface, | will follow one entire
button through the process.

I will use the Motors On button as an example.
This button controls the DC motors that shoot the

Overall MouseAir Software Architecture

Thread Creation MouseAir.py P Poll

Main Program Loop|
Poll / \Poll

Pi Camera Snap and Cat Detection

Formatting thread Devices

State Reporting Command File

WiFi /Internet

RasPiConnect
App

mouse up in the air. It has two states, "On" and
"Off". This makes it a perfect candidate for a
Feedback Action Button.

When you add a control in RasPiConnect, you
can set the control code (usually a unique
identifier) for the button. By convention, each
Feedback Action Button starts with "FB". Our
motor control button a control code of "FB-16".

When you tap the button on RasPiConnect an
XML message (or optionally a JSON or raw
mode message) is sent from the iPad to the
Raspberry Pi. The message is parsed by the
RasPiConnectServer software and the results
are presented to your customized code in the
Local.py file. You don't have to deal with any of
the parsing or handshaking, the libraries do all of
this for us. The button is then presented to
Local.py. We wrote one small routine to interface
to the MouseAir.py command file.

defsendCommandToMouseAirAndWait(command):

The next section is the "money code", that is, the
code where the functionality of the button is
implemented.

object Type match
if (objectType ==
FEEDBACK_ACTION_BUTTON_UITYPE):
if (Config.debug()):
print "FEEDBACK_ACTION_BUTTON_UTYPE
of %s found" % objectServerID

FB-16 - turn motors on
if (objectServerID == "FB-16"):
#check for validate request

N

validate allows RasPiConnect to
verify this object is here
if (validate == "YES"):
outgoingXMLData +=
Validate.buildValidateResponse("YES")
outgoingXMLData +=
BuildResponse.buildFooter()
return outgoingXMLData
not validate request, so execute
responseData = "XXX"
if (objectName is None):
objectName = "XXX"
lowername = objectName.lower()
if (lowername == "motors on"):
print "set Motors On"

We now send the command to MouseAir.

status =

sendCommandToMouseAirAndWait("MOTORSON™)
responseData = "motors Off"
responseData =

responseData.title()

Note we have now "toggled" the button by sending
"Motors Off" back to the app to set up the button for
the next tap.

elif (lowername == "motors off"):
status =
sendCommandToMouseAirAndWait("MOTORSOFF™")
responseData = "Motors On"
responseData =

responseData.title()

The default section is in case of a time out and the
button becomes blank. In that case, we want the
motors off.

defaults to Motors off
else:
print "Motors Off"
status =
sendCommandToMouseAirAndWait("MOTORSOFF")
lowername = "Motors On"
responseData = lowername.title()

Flnally, the rest of the XML response is built. By the
way, if you somehow screw up the XML,
RasPiConnect just rejects it. There is error
checking built into the App as well as checksum on
each response.

outgoingXMLData +=
BuildResponse.buildResponse(responseData)

outgoingXMLData +=
BuildResponse.buildFooter()

return outgoingXMLData

Looking at the code, you can see the command
that is written to the MouseAir command file. The
software then waits for the "DONE" and then sends
the response (which is the text used for the button
on the iPad. If you sent a "Motor On" command, the
response to be sent back would be "Motor Off" and
then the "Motor Off" would be displayed on the
button on the app.

That is the complete cycle. This design pattern is
used for all of the controls.

seeee ATAT 17:44 729

L

/ 1 'Zm(jc//‘l P

Y e PRY
Triggers
Utrasoric o raon Garera Moton 07
Watch Mouse Watch Cat
50 -
s Camera Pan/Tilt
94 Manval Controls
N
. L Pan Right
& Top Servo Close Bottom Servo Closq
= Tilt Up.
o .
000000000 Shoot Solenoid Motors On
Live Ultrasonic Range
..........

The completed final control panel for MouseAir

Conclusion

How to setup a control panel for your project is
always a challenge. | like being able to control a
project locally and across the Internet. MouseAir is
a complicated project with a number of different
things to adjust and to view. | found that
RasPiConnect was a very good match and
platform on which to build. | am already planning to
use it on SwitchDoc Labs next project.

RasPiConnectServer is available on
http://github.com/milocreek and the specific
MouseAir RasPiConnect file (Local.py) is available
on http://github.com/switchdoclabs.

For more information about MouseAir see the
authors blog at www.switchdoc.com.

For more information about RasPiConnect see
www.milocreek.com

w

